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Abstract:

Meadows were introduced by Bergstra and Tucker in [5] as algebraic struc-
tures, given by equational theories, where it makes sense to divide by zero.
To be more specific, a meadow is a sort of commutative ring with a multi-
plicative identity element and a total multiplicative inverse operation. Two
of the main classes of meadows are involutive meadows, in which the inverse
of zero is zero, and common meadows (introduced in [3]), in which the inverse
of zero is a term a which is maximal, in the sense that x + a = a, for every
element x in the meadow. In common meadows 0 ·x doesn’t have to be equal
to 0.

Even though meadows were only recently introduced, the subject is reveal-
ing to be of interest, mostly as datatypes given by equational axiomatizations
(see e.g. [2, 5, 4, 1]) allowing for simple term rewriting systems which are eas-
ier to automate in formal reasoning [1, 6]. More recently, E. Bottazzi and
B. Dinis [7] found a connection with nonstandard analysis which provides
new models for both involutive and common meadows. Also, J. Dias and B.
Dinis in [8] and [9] studied the algebraic properties of common meadows and
obtained some progress towards an enumeration of finite meadows.

Since this is a emergent field in mathematics there are many open ques-
tions, and possible lines of research. For example, study common meadows
not only from an algebraic point of view but also from a topological point
of view, via topological meadows; study related structures were some axioms
are relaxed (e.g. commutativity or distributivity); the study of combina-
torial/number theoretical problems related with meadows; the study of the
model theory of meadows and of its complexity.
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